Global Color Saliency Preserving Decolorization

نویسندگان

  • Jie Chen
  • Xin Li
  • Xiuchang Zhu
  • Jin Wang
چکیده

The process of transforming a color image with three channels to a single channel grayscale image is called decolorization, which will unavoidably accompany with the information loss. In this paper, we propose a method to obtain a grayscale image which best preserves the global saliency of the color image. First, we convert the color image to the YUV color space, which separates the luminance and chrominance channels, and conduct parametric linear mapping on Y,U,V channels, through selecting different parameters to get different candidate grayscale images. Then, we compute the global contrast based saliency maps of the color image and candidate grayscale images. Finally, we use the Normalized Cross-Correlation metric to select the grayscale image whose saliency map is the most similar to that of the color image as the wanted decolorization result. The experiment results show that our method retains part of the chrominance information, prevents the contrast degradation in the isoluminance colors, and the global saliency preserving purpose reduces the abrupt change or distortion around the edge areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual Perception Preserving Decolorization Method

This paper presents a decolorization method using gradient and saliency as the maintained features in the conversion to preserve the local and global visual perception. First, we construct a linear parametric mapping function of RGB color channels. Then, we calculate the feature value of each pixel in the color image and the parameterized grayscale image, the feature value integrates the pixel ...

متن کامل

Local and Global Contrast Preserving Decolorization Using Gradient Matrix Correlation

This paper presents a gradient matrix correlation (GMC) measure-based decolorization model for faithfully preserving the appearance of the original color image. Contrary to the conventional GE measures, the GMC measure calculates the summation of the gradient correlation between each channel of the color image and the transformed grayscale image. The discrete searching strategy and sensitive we...

متن کامل

Joint Multi-Image Saliency Analysis for Region of Interest Detection in Optical Multispectral Remote Sensing Images

The automatic detection of regions of interest (ROI) is useful for remote sensing image analysis, such as land cover classification, object recognition, image compression, and various computer vision related applications. Recently, approaches based on visual saliency have been utilized for ROI detection. However, most existing methods focus on detecting ROIs from a single image, which generally...

متن کامل

Graph-based Visual Saliency Model using Background Color

Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...

متن کامل

Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain

When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016